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ABSTRACT

An object-based verification method for short-term, storm-scale probabilistic forecasts was developed and

applied to mesocyclone guidance produced by the experimental Warn-on-Forecast System (WoFS) in 63

cases from 2017 to 2018. The probabilistic mesocyclone guidance was generated by calculating gridscale

ensemble probabilities fromWoFS forecasts of updraft helicity (UH) in layers 2–5 km (midlevel) and 0–2 km

(low-level) above ground level (AGL) aggregated over 60-min periods. The resulting ensemble probability

swaths are associated with individual thunderstorms and treated as objects with a single, representative

probability value prescribed. A mesocyclone probability object, conceptually, is a region bounded by the

ensemble forecast envelope of a mesocyclone track for a given thunderstorm over 1 h. The mesocyclone

probability objects were matched against rotation track objects in Multi-Radar Multi-Sensor data using the

total interest score, but with themaximum displacement varied between 0, 9, 15, and 30 km. Forecast accuracy

and reliability were assessed at four different forecast lead time periods: 0–60, 30–90, 60–120, and 90–150min.

In the 0–60-min forecast period, the low-level UH probabilistic forecasts had a POD, FAR, and CSI of 0.46,

0.45, and 0.31, respectively, with a probability threshold of 22.2% (the threshold of maximum CSI). In the

90–150-min forecast period, the POD and CSI dropped to 0.39 and 0.27 while FAR remained relatively

unchanged. Forecast probabilities . 60% overpredicted the likelihood of observed mesocyclones in the

0–60-min period; however, reliability improved when allowing larger maximum displacements for object

matching and at longer lead times.

1. Introduction

A fundamental aspect of NOAA’s Warn-on-Forecast

(WoF; Stensrud et al. 2009, 2013) project is producing

rapidly updating, short-term (i.e., 0–6-h), storm-scale,

probabilistic severe weather hazard guidance. Several

case studies have demonstrated that experimental WoF

systems can produce accurate short-term probabilistic

guidance for hazards such as tornadoes (Snook et al.

2012; Yussouf et al. 2013a,b; Wheatley et al. 2015;

Yussouf et al. 2015; Jones et al. 2016), hail (Snook et al.

2016; Labriola et al. 2017, 2019), and heavy rainfall

(Yussouf et al. 2016; Lawson et al. 2018a). With con-

tinual development of the experimental WoF system, it

is critical to objectively assess the impact of system con-

figuration changes (e.g., improvements in data assimilation

or increasing grid resolution) or inclusion of post-

processing techniques (e.g., machine learning calibra-

tion) on probabilistic forecast performance. Recently,

object-based frameworks have become increasingly

common for the verification of convective-allowing model

forecasts of various severe weather hazards (e.g., Gallus

2010; Johnson et al. 2013; Clark et al. 2014;Cai andDumais

2015; Stratman and Brewster 2017; Skinner et al. 2018;

Jones et al. 2018; Adams-Selin et al. 2019). Object-based

verification can easily diagnose or intuitively account for

displacement errors between a forecast and observa-

tions as well as provide object properties (e.g., orienta-

tion, aspect ratio, area) as additional forecast attributes

for evaluation (Davis et al. 2006; Ahijevych et al. 2009).

Skinner et al. (2018, hereafter S18) established a
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baseline for the performance of deterministic thunder-

storm and mesocyclone predictions produced by the

real-time prototype WoF system (WoFS), then known

as the NSSL Experimental Warn-on-Forecast System

for ensembles (Wheatley et al. 2015; Jones et al. 2016).

Using an object-based framework, they determined that

deterministic forecasts provided for both thunderstorms

and mesocyclones across 32 spring cases were skillful

overall. However, a limitation of the work was that no

assessment of the accuracy and reliability of the WoFS

probabilistic guidance was performed. As an extension

of their work, we seek to develop a novel object-based

verification method for storm-scale probabilistic guid-

ance and apply it to WoFS mesocyclone guidance.

Objective verification of probabilistic mesocyclone

forecasts from convective-allowing ensembles has thus

far been performed in the next-day (6–36 h) paradigm

using grid-based frameworks with neighborhood post-

processing (e.g., Gallo et al. 2016, 2018, 2019; Sobash

et al. 2016a; Dawson et al. 2017). For next-day forecasts,

there are multiple compelling reasons for utilizing neigh-

borhood postprocessing. First, at these forecast lead times,

intrinsic predictability limits restrict skillful forecasts to

broader mesoscale regions rather than the scales rep-

resentative of individual convective storms (Lorenz

1969). Second, a well-documented flaw of grid-based

verification in high resolution forecasts is the infamous

‘‘double penalty’’, where a small spatial displacement

between the forecast and an observation leads to both a

missed observation and false alarm forecast (Ebert

2008). The result is an unduly negative evaluation of a

forecast’s predictive skill since, operationally, small

spatial displacements are tolerable. Postprocessing tech-

niques such as neighborhooding, filtering, or upscaling (i.e.,

coarsening the verification grid) applied to both forecasts

and observations can relax the condition of an exact

match and instead assess the scale at which forecasts

have the best performance [for a comprehensive dis-

cussion on such techniques see Gilleland et al. (2009,

2010) and Schwartz and Sobash (2017)].

A difference between WoF and next-day ensemble

forecasts is that WoF is intended to provide forecast

guidance for individual thunderstorms (Stensrud et al.

2009, 2013). Grid-based verification of WoF guidance

can quantify errors associated with the numerical

model or data assimilation technique. However, the

neighborhooding/filtering/upscaling techniques used by

grid-based verification smooth spatial scales associated

with convective storms. Therefore, a goal of this study

is to develop a complementary verification technique for

WoF guidance that retains storm-scale forecast informa-

tion, but allows for operationally tolerable spatial dis-

placements.Anovel, object-based framework is developed

to assess the accuracy and reliability of the WoFS proba-

bilistic guidance. In this framework, forecast probability

swaths associated with individual thunderstorms can be

conceived as ‘‘probabilistic’’ forecast objects with a single,

representative probability value. Conceptually, we as-

sign a probability of event1 occurrence within a storm-

scale region bounded by the forecast envelope of the

event location. The prescribed probability value pre-

dicts the likelihood of a given storm producing an event

rather than the likelihood of an event impacting any

particular point; this distinction and the advantages of

event-based probabilistic forecasts are further discussed

in section 3. Another advantage of an object-based

framework is that it allows classification of each predicted

and observed storm as a ‘‘hit,’’ ‘‘miss,’’ or ‘‘false alarm,’’

permitting calculation of contingency table statistics, which

can provide diagnostic information on specific forecast

errors (e.g., Wolff et al. 2014) unlike more traditional

methods (Brown et al. 2011). Additionally, object-based

verification emulates initial forecaster interpretations of

WoF guidance, where forecasters key in on coherent areas

of interest in the WoFS model ouput rather than using

the forecast information in a strictly point-by-point basis

(Wilson et al. 2019).

Section 2 provides a description of the forecast and

verification datasets and object identification methods

for forecast and observed rotation tracks. The novel

aspects of this study are discussed in section 3 including

producing ensemble probabilities from forecast rotation

tracks, the distinction between grid- and object-based

verification of probabilities, and object matching and

verification of probability swath objects. Verification

results for WoFS probabilistic mesocyclone guidance

over a dataset of 63 cases from 2017 and 2018 are pro-

vided in section 4. Finally, section 5 provides a summary

and discusses limitations of the study and future work.

2. Forecast and verification data

a. Description of the forecast dataset

The WoFS is a rapidly updating ensemble data as-

similation and prediction system. WoFS consists of

a 36-member multiphysics ensemble (see S18, their

Table 1) that uses theAdvanced Research version of the

Weather and Research Forecast Model (WRF-ARW;

Skamarock et al. 2008) with 3-km horizontal grid spac-

ing. WoFS is initialized with initial and lateral boundary

conditions provided by the experimental 3-km High-

Resolution Rapid Refresh Ensemble (HRRRE; Dowell

1 The event considered in this study is a mesocyclone; however,

the technique is applicable to any storm-generated hazard.

1722 WEATHER AND FORECAST ING VOLUME 34

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/34/6/1721/4868388/w

af-d-19-0094_1.pdf by N
O

AA C
entral Library user on 11 August 2020



et al. 2016) on a 750km 3 750 km domain recentered

daily over the region of greatest severe weather poten-

tial. Radar, satellite (i.e., GOES-16 cloud water path),

and Oklahoma mesonet (when available) observations

are assimilated every 15min with conventional obser-

vations assimilated hourly using the ensemble adjust-

ment Kalman filter (Anderson 2001) included in the

DataAssimilation Research Testbed (DART) software.

After five 15-min assimilation cycles (i.e., starting at

1900 UTC), 18-member forecasts (a subset of the 36

analysis members) are issued every 30min and provide

forecast output every 5min for up to 6 h of lead time.

This study uses 63 cases generated during the 2017 and

2018 Hazardous Weather Testbed Spring Forecasting

Experiments (HWT-SFE; Gallo et al. 2017) and 2018

Hydrometeorology Testbed Flash Flood and Intense

Rainfall experiment (HMT-FFaIR; Barthold et al. 2015;

Albright and Perfater 2018). The WoFS configuration

described above was used during the 2017 and 2018

HWT-SFEs, but during the 2018 HMT-FFaIR the do-

main was enlarged to 900 km3 900 km, the Community

Gridpoint Statistical Interpolation–based ensemble

Kalman square root filter (GSI-EnKF; Hu et al. 2017)

was used as the data assimilation scheme, and forecasts

were initialized every hour between 1800 and 0400UTC.

The changes to the domain size and forecast length in-

troduced during the 2018 HMT-FFaIR experiments

were designed to focus on heavy rainfall forecasts at

longer lead times. Overall model performance between

both configurations was similar (not shown). Although

forecast periods varied, to ensure that cases were

weighted equally, only forecasts initialized at the top of

the hour between 1900 and 0300 UTC were considered

for our evaluations.

To evaluate the skill and reliability of WoFS probabi-

listic mesocyclone guidance, 60-min forecasts of updraft

helicity (UH) in the 2–5- and 0–2-km layers above ground

level (AGL) are examined in this study. Assessing UH

in the two different layers can help determine if WoFS

probabilistic mesocyclone guidance accurately distin-

guishes between supercells with and without low-level

mesocyclones, which can be used as a proxy for tornado

occurrence (Trapp et al. 2005). To examine the decrease

in skill of the WoFS probabilistic model guidance with

forecast lead time, the following four 60-min forecast

periods were used: 0–60, 30–90, 60–120, and 90–150min.

b. Description of the verification dataset

The verification dataset for the WoFS probabilistic

mesocyclone guidance is developed using radar-derived

rotation tracks rather than local storm reports, similar to

several recent studies (e.g., Skinner et al. 2016; Dawson

et al. 2017, S18). Although radar-derived rotation tracks

are imperfect they avoid some limitations of using local

storms reports, which suffer from poor estimates of

intensity (Trapp et al. 2006; Verbout et al. 2006),

nonmeteorological bias (Brooks et al. 2003; Doswell

et al. 2005) and undersampling in rural areas (e.g.,

Potvin et al. 2019). Low- and midlevel (0–2 and 2–5 km

AGL, respectively) radar-derived rotation tracks are

generated from the maximum range-corrected NSSL

Multi-Radar Multi-Sensor (MRMS) cyclonic azimuthal

wind shear data (Smith and Elmore 2004; Miller et al.

2013; Smith et al. 2016; Mahalik et al. 2019) in each layer

calculated every 5min over the WoFS domain. Follow-

ing quality control and interpolation onto theWoFS grid

(fully described in S18), these azimuthal wind shear data

are aggregated to produce 60-min rotation tracks. In

S18, radar data in regions too close or too far (i.e., less

than 5km or greater than 150 km) from the nearest

WSR-88D site were ignored to mitigate range-related

impacts. However, in this study, radar data outside the

150-km radius or inside the 5-km radius are included in

both the forecast and verification dataset. Recalculation

of verification scores presented in S18 showed minimal

sensitivity to including these data (not shown).

c. Object identification

1) FORECAST AND VERIFICATION ROTATION

TRACKS

The goal of the object identification is to isolate strong

mid- and low-level rotation that may be associated with

severe weather (e.g., winds. 50ms21, hail. 1.0 in., or a

tornado) in both the forecast and verification dataset. In

S18, single thresholds based on the 99.95th percentile

value in the forecast and verification dataset were used

for object identification. However, there are known

limitations to the single threshold method. Object

identification in a single threshold method will be sen-

sitive to small changes in the size and intensity of objects

near the threshold. Additionally, without using an ex-

cessively high threshold, the single threshold method

can perform poorly at separating distinct, overlapping

features. A candidate object identification method well

suited to mitigate these issues is the enhanced watershed

algorithm, which identifies local maxima and then grows

objects pixel by pixel from a quantized version of the

original field until they reach a specified area or intensity

criteria (Lakshmanan et al. 2009). Objects are restricted

from growing into regions less than the given minimum

threshold (e.g., midlevel UH , 40m2 s21) and once an

object is identified, a larger region surrounding the ob-

jects is demarcated as a no-grow region for additional

objects ensuring separation (i.e., the foothills region in

Lakshmanan et al. 2009).
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For this study, we are using the enhanced watershed

algorithm available in the open-source Hagelslag Python

package (Gagne et al. 2016), which is a Python im-

plementation of Lakshmanan et al. (2009). The param-

eters for the Hagelslag enhanced watershed algorithm

(Table 1) were tuned to improve the identification of

both MCS and supercell rotation tracks, but there are

sensitivities to these parameters. Given that objects

identified by the enhanced watershed algorithm are re-

stricted from growing into regions less than the mini-

mum threshold, a higher minimum threshold can shrink

objects or potentially separate tracks where the intensity

fluctuates below the minimum threshold (a limitation of

the single threshold method as well). However, lowering

theminimum threshold identifies weaker rotation tracks

where the intensity inside the object is similar to the

minimum threshold. To address this concern, we applied

the image processing concept of hysteresis (Jain 1989;

Lakshmanan et al. 2009) where objects are identified

at a lower threshold, but must contain pixels above a

second, higher threshold. Essentially, the lower minimum

threshold is used to prevent shrinkage and/or separation

of identified objects, but the additional threshold removes

objects with weaker intensity. Rather than using the

maximum intensity inside an object for the second

threshold, which can be unrepresentative and isolated to a

single point, we used the 75th percentile value; a value

representative of quarter of the pixels within an object. The

choice of a 75th percentile value threshold for mid- and

low-level azimuthal wind shear was varied between 0.003

and 0.005 s21 with the identified objects matched against

local storm reports to determine a representative value for

‘‘severe’’ rotation. Although increasing the intensity value

improved matches against the local storm reports, there

were diminishing returns in bulk verification metrics as

increasing the threshold removed too many objects. We

also did not strive for a perfect match owing to the un-

derreporting bias noted above.A 75th percentile threshold

of 0.0035 s21 was found to best balance these identification

criteria for both mid- and low-level azimuthal shear.

Object identification thresholds formid- and low-level

UH swaths were determined by trying to produce a

similar number of forecast objects as observed objects.

This was motivated by Sobash et al. (2016b) and Sobash

and Kain (2017), where forecast fraction skill score was

maximized when the number of severe surrogate prob-

abilistic forecasts was equivalent to the number of se-

vere reports. The thresholds for low (mid)-level UH

objects found to produce a forecast object count similar

to the observed object count are 20m2 s22 (80m2 s22).

Although these values were not hypertuned, they still

reflect the current WoFS dataset and may be defined

suboptimally. Furthermore, we found that decreasing

these values and thereby increasing the number of forecast

objects improved the contingency table metrics [increased

critical success index (CSI)], but degraded reliability.

Similar to Sobash et al. (2016b) and Sobash and Kain

(2017), we found thatmatching the forecast object count to

the observed object count was an optimal trade-off be-

tween the contingency table metrics and reliability.

Another sensitivity to the watershed method is that a

larger area threshold (or saliency criterion as denoted in

Lakshmanan et al. 2009) is required to prevent separation

and shrinkage. However, in the current implementation

of Hagelslag, the separation of local maxima is a func-

tion of the area threshold. Thus, when using a larger area

threshold it is possible that only a single rotation track is

identified among a cluster of two or more tracks. To

allow for identification of additional nearby tracks, we

set the separation of local maxima at 30 km.

After identification, a series of quality control mea-

sures were applied. First, forecast and observed objects

that did not meet a 90-km2 minimum area threshold were

removed. Next, forecast and observed objects with a

minimum distance than 12km were merged into a single

object and objects with a duration less than 15min were

removed. Finally, the 75th percentile value threshold

(i.e., the hystersis threshold)was applied to removeweaker

rotation tracks identified by the watershed method.

2) FORECAST PROBABILITY SWATH OBJECTS

Forecast probability swaths associated with individual

thunderstorms can be conceived as individual ‘‘proba-

bilistic’’ forecast objects with a prescribed single, rep-

resentative probability value. The parameters for the

Hagelslag enhanced watershed algorithm for identifying

TABLE 1. Parameters of the Hagelslag watershed algorithm for all identified objects. The minimum and maximum intensity thresholds

(min_thresh and max_thresh, respectively) for the azimuthal wind shear reflect that of the rescaled values. A larger saliency criterion

(size_threshold_pixels) than past studies (e.g., Sobash et al. 2016a) was required to prevent tracks from being broken intomultiple objects.

For more details on the parameters, the open-source Hagelslag Python package is available at https://github.com/djgagne/hagelslag.

Azimuthal wind shear Low-level UH Mid-level UH Ensemble probabilities

min_thresh 0.003 3 104 s21 10m2 s22 40m2 s22 0

max_thresh 0.008 3 104 s21 50m2 s22 250m2 s22 75

data_increment 2 5 5 10

size_threshold_pixels 200 200 200 200
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probability objects are provided in Table 1. The pa-

rameters were tuned for identifying probability objects

for both MCS and supercell cases, but fail to distinguish

between closely spaced rotation objects. The poorer per-

formance in these cases is attributable to the sensitivity of

the enhanced watershed algorithm to the scale of the

phenomena to be identified (noted in Lakshmanan et al.

2009) and absence of universal parameters that cover all

relevant spatial scales. After object identification of the

probability swaths, the maximum gridpoint probability

within an object is assigned to each gridpoint. Ideally, the

likelihood of amesocyclone occurringwithin a given storm

is the total number of ensemble members producing a

mesocyclone divided by the ensemble size, which is

typically equal to the maximum probability within the

object. However, in some cases, UH forecast objects

among the ensemble members may not overlap at a

single grid point (particularly at later lead times). In

these cases, the maximum number of ensemble mem-

bers forecasting a mesocylone at a given point will be

less than the total number of ensemble members

forecasting a mesocyclone within a given storm. In these

instances the maximum probability within the object

will underestimate the ensemble probability of a meso-

cyclone occurring within a given storm.

3. Object-based verification of probabilistic
guidance

a. Generating the ensemble probability of
mesocyclone occurrence

In Schwartz and Sobash (2017), multiple methods for

generating forecast probabilities from CAM ensembles

were discussed. To generate gridscale ensemble probabil-

ities, fij forecasts for i5 1, . . . ,M grid points and j5 1, . . . ,

N ensemble members are converted to binary using an

event threshold q (e.g., rainfall . 1 in.) to produce N

binary probability fields (BP)

BP(q)
ij
5

(
1, if f

ij
$ q ,

0 , if f
ij
, q ,

(1)

where the binary probability fields are a function of the

event threshold. The ensemble probability (EP) at the

ith grid point is then calculated as an ensemble average

of the binary probability fields

EP(q)
i
5

1

N
�
N

j51

BP(q)
ij
. (2)

In this study, we adopt a similar definition, but the

binary probability field of mesocyclone occurrence at

the ith grid point for the jth member (BPij) is defined

using the forecast mesocyclone objects

BP
ij
5

(
1, if i 2 S

j
,

0 , if i; S
j
.

(3)

where Sj is the set of grid points within the forecast

mesocyclone objects for the jth ensemble member.

Calculating the ensemble probability from the quality-

controlled forecast mesocyclone objects, rather than us-

ing an event threshold on the raw time-aggregated UH

forecasts, helps ensure that the probability swaths are

associatedwith coherent forecastmesocyclone tracks. For

this study, no additional alterations (e.g., upscaling,

smoothing, filtering, neighborhooding) are made to the

ensemble probabilities of mesocyclone occurrence.

b. Grid-based verification of WoFS mesocyclone
probabilistic guidance

Forecast probability accuracy and reliability are tra-

ditionally evaluated in a grid-based framework where

forecast probabilities and observations are verified on

the native grid (e.g., 3-km grid for our study) or upscaled

and evaluated on a coarser grid. The reliability of the

0–60-min low-level UH probabilistic guidance on the

native 3-km grid is given in Fig. 1d with an example

forecast shown in Fig. 1a. The gridscale forecast proba-

bilities exhibit the sharpness and spatial scales of individual

thunderstorms, but greatly overpredict the likelihood of a

mesocyclone impacting a point (similarly formidlevelUH;

not shown). The large overprediction bias of the WoFS

probabilistic guidance on the native 3-km grid indicates

considerable underdispersion. Quantifying and attributing

the underdispersion in the WoFS is beyond the scope of

this paper but warrants future research.

Traditionally, neighborhood maxing and spatial

smoothing is applied to forecast probabilities to correct

for underdispersion, which can improve reliability. To

improve the reliability of the forecast probabilities on

the native 3-km grid without altering the observations

requires substantial spatial smoothing (s 5 300 km),

which is unsurprising as a given point in the WoFS do-

main had 0.02% chance of being within observed low-

level rotation over the 63 cases. For a rare event, reliable

forecast probabilities (especially on high resolution

grids) will tend to be low, near the climatological fre-

quency, especially as predictability decreases (Murphy

1991). This smoothing can limit the usefulness of WoFS

probabilistic guidance to human forecasters for hazards

associated with individual thunderstorms between the

watch and warning time scales. This is because the

smoothed probabilities can be misinterpreted as each

thunderstorm having a low likelihood of producing an
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event rather than an event impacting any particular point

having a low likelihood; this ambiguity was pointed out in

Ebert et al. (2011) for heavy rainfall forecasting.

It is possible to retain higher probabilities (e.g., .50%)

using neighborhood maxing in combination with smooth-

ing, but again at the cost of spatial resolution, as shown in

Figs. 1b, 1c, 1e, and 1f. In Figs. 1b and 1e (Figs. 1c,f), the

neighborhood maximum ensemble probability (NMEP;

Schwartz and Sobash 2017) is calculated within a 3 3 3

(53 5) gridpoint neighborhood and smoothedwith a 6-km

(12-km) Gaussian filter a while 3 3 3 (5 3 5) gridpoint

maximum filter was applied to the observations. It is

worth noting that these neighborhoods aremuch smaller

than those used for next-day convective-allowing ensem-

bles (e.g., 40-km smoothing and maximum value radii are

typical for next-day verification). Although improved re-

liability and higher probabilities are present in both cases

(more so in Fig. 1f), much of the thunderstorm-scale

forecast information has been filtered out. For example,

the high probabilities associatedwith four distinct supercells

in Kansas are strongly damped or aggregated into broad,

coarser regions of forecast probabilities (cf. Fig. 1a with

Fig. 1b or Fig. 1c). Ultimately, the forecast probabilities are

unreliable on the native 3-kmgrid owing to underdispersion

and improving reliability throughpostprocessing techniques

obscures storm-scale information.

c. Distinction between grid- and object-based
verification of probabilities

Figure 1a suggests WoFS, which uses rapidly cycled

data assimilation to produce accurate storm-scale initial

conditions, is capable of producing highly confident

short-term forecasts of a rare event. To retain unsmoothed,

high forecast probabilities valid at finer spatial scales we

are drawing a distinction between spatial probabilities

and event probabilities, which is illustrated in Fig. 2.

Event probabilities predict the likelihood of a given

storm producing an event within a neighborhood

FIG. 1. (top) The 0–60-min probabilistic forecast of low-level mesocyclone occurrence initialized at 2300 UTC 1 May 2018 with

(a) forecast probabilities and observations on the native 3-km grid and no postprocessing, (b) NMEP in 33 3 gridpoint neighborhoodwith

Gaussian smoothing (s 5 2) and 3 3 3 gridpoint maximum value filter applied to the observations, and (c) NMEP in 5 3 5 gridpoint

neighborhood with Gaussian smoothing (s 5 4) and 5 3 5 gridpoint maximum value filter applied to the observations. Observed hour-

long low-level rotation tracks are outlined with black contours. (bottom) Reliability diagrams for the 0–60-min WoFS low-level updraft

helicity probabilities calculated for all 63 cases and evaluated in a grid-based framework; (d)–(f) correspond to probabilities calculated in

the manner described for (a)–(c).
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determined by the ensemble forecast envelope while

spatial probabilities predict the likelihood of an event oc-

curringwithin some prescribed neighborhood of a point and

are not necessarily associated with a specific convective

storm. Therefore, one can measure the consistency of

probabilistic forecasts in complementary event- or spatial-

based frameworks (e.g., the consistency of the spatial

probabilities was assessed in section 3b). The event proba-

bility framework is tolerant of small spatial displacements

between ensemblemember forecasts of a mesocyclone, but

is conditional on the predicted mesocyclones developing

within the same parent thunderstorm. This effectively

changes the interpretation of the forecast probabilities

from the likelihood of an event occurring within a pre-

scribed radius of a point to the likelihood aparticular storm

will produce an event. The ensemble-determined footprint

is flow dependent and can grow in time as forecast un-

certainty increases. The use of a static neighborhood in

traditional methods, on the other hand, measures forecast

quality at the same spatial scales for each available lead

time. Event-based verification permits the consistency of

WoFS’s probabilistic guidance for rare events to be as-

sessed for predictions of individual convective storms.

d. Verification of probability swaths in an
object-based framework

We focus on two questions for evaluating WoFS

probabilistic guidance:

1) Are probabilistic mesocyclone forecasts for individ-

ual thunderstorms skillful?

2) Are probabilistic mesocyclone forecasts for individ-

ual thunderstorms reliable?

To answer the first question, we apply object matching

between the probability and observed rotation tracks

objects. Object matching allows for calculation of veri-

fication metrics based on traditional contingency table

statistics (i.e., hits, misses, and false alarms), which are

intuitive and easily interpreted. Traditionally, matched

forecast objects are classified as ‘‘hits,’’ unmatched

forecast objects as ‘‘false alarms,’’ and unmatched verifi-

cation objects as ‘‘misses.’’ However, probability forecast

objects generated from multiple predicted UH swaths

(e.g., broad MCS probability objects) may overlap with

several observed mesocyclones, especially at later lead

times. In these situations, the number of ‘‘hits’’ in a

single forecast will vary depending on whether matched

forecast or observed objects are counted. Based on the

contingency table, the total number of possible ‘‘hits’’ is

the number of observed objects. Thus, when ‘‘hits’’ were

classified as matched forecast objects, the number of hits

was reduced within the contingency table, resulting

in lower probabilistic forecast skill (roughly a 0.1 drop in

CSI; not shown). Furthermore, to remain consistent

in the contingency table, if ‘‘hits’’ are classified as

matched forecast objects, then in situations with multiple

FIG. 2. Illustration of distinction between spatial and event reliability of probabilistic forecasts. (a) Event re-

liability measures the consistency of probabilistic forecasts associated with an individual thunderstorm within an

anisotropic neighborhood determined by the forecast ensemble envelope [forecast probabilities (shown in red) are

the likelihood of the event occurring]. (b) Spatial reliability measures the consistency of probabilistic forecasts of an

event occurring within some prescribed neighborhood of a point and are not associated with a specific convective

storm [forecast probabilities (shown in red) are the likelihood of the event impacting a particular point].
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observed objects overlapping a single forecast object, all

but one observed object would be considered a ‘‘miss.’’

As this situation arises within probability swath objects

associated with MCSs or nearby cellular convection, we

classify ‘‘hits’’ as the number of observed rotation track

objects that are matched to forecast probability objects.

The verification metrics in this study are limited to

those that consider only hits, misses, and false alarms,

which can be visualized using a performance diagram

(Roebber 2009). Traditionally, probabilistic forecasts

exceeding a probability threshold are considered a

‘‘yes’’ forecast and probabilistic forecast less than the

probability threshold are ‘‘no’’ forecasts. These classifi-

cations allow for the contingency-table-based probabil-

ity of detection (POD), false alarm ratio (FAR), success

ratio (SR; 1 2 FAR), frequency bias (or simply bias),

and CSI to be used to quantify the skill of WoFS prob-

abilistic mesocyclone forecasts. These metrics do not

address the impact of correct negatives, which is a

known limitation of object-based methods (Davis et al.

2009). Probability forecast objects can be labeled as

‘‘no’’ forecasts through a probability threshold, but they

remain a poor sample of the ‘‘true’’ number of correct

negatives for rare-event forecasting, given the majority of

the forecast domain is not within any object. The necessity

of ignoring correct negatives precludes the use of tradi-

tional probabilistic forecast verification metrics such as

Brier skill score (BSS), the receiver operating curve

(ROC), and area under theROC (AUC). In this study, the

probability thresholds used for defining probability swath

objects and calculating contingency table metrics are the

discrete ensemble probabilities [(1/18, 2/18, . . . , 18/18)].

To address the second question on assessing the re-

liability of the probabilistic mesocyclone forecast, we

can use the event reliability definition from Fig. 2.

Similar to grid-based reliability, probability objects can

be binned based on their representative probability and

compared against the observed frequency. For our

study, the observed frequency is defined as the number

of matched probability objects divided by the total

(matched and unmatched) number of probability ob-

jects in a given probability bin. Unlike the contingency

table metrics, probability objects are binned on every

other discrete ensemble probability [(1/9, 2/9, . . . , 9/9)]

as large variations in number of samples exist when

binning on each discrete probability. Furthermore, using

the method from Bröcker and Smith (2007), through

bootstrap resampling we can generate a set of reliable

forecasts from our dataset and compute variations in the

observed frequencies. From the observed frequency

variations, we can display the 5th and 95th percentile for

each probability bin (known as consistency bars), which

allows for immediate interpretation of the reliability of

the reliability diagram. The extent to which the proba-

bilistic forecasts are reliable is reflected by whether the

observed frequencies fall within the consistency bars

rather than the ‘‘distance from the diagonal.’’

The object matching in S18 used a simplified version

of the total interest score [Davis et al. 2006; see Eq. (1) in

S18] that included only the minimum spatial displace-

ment and centroid and timing displacements. The timing

displacement factor is not considered for the 60-min

forecast periods used in this study. A match must

exceed a minimum total interest score of 0.2, which ef-

fectively reduces the matching distance. To explore the

sensitivity of forecast skill and reliability to matching

distance, the maximum distance for both centroid and

minimum displacement used in the total interest score is

varied between 0, 9, 15, and 30km and is hereafter re-

ferred to as the matching neighborhood.

The method for generating gridscale probabilities and

identifying probability swaths as objects is summarized

in Fig. 3. First, forecast rotation track objects are iden-

tified and quality controlled from the raw UH field for

all ensemble members [Fig. 3a; section 2c(1)]. The grid-

scale ensemble probability of mesocyclone occurrence is

then calculated from the forecast rotation track objects

(Fig. 3b; section 3a), and probability swath objects are

identified using the enhanced watershed algorithm with

the maximum probability value assigned to the swath

object [Fig. 3c; section 2c(2)].

It is worth noting that the probability object identifi-

cation for the broad regions of probability in Nebraska

(near the ‘‘A’’) is a limitation of the enhanced watershed

algorithm. The enhanced watershed algorithm will stop

growing objects once they satisfy the area criterion and

an appropriate minimum area is based on the scale of

the phenomena. Therefore, in cases of larger probability

swaths, shrinkage of the identified probability swath

may produce larger centroid and boundary displace-

ment from observed object than if the object was iden-

tified to its full extent.

4. Results

a. Contingency table metrics

The performance of the probabilistic low- and mid-

level UH forecasts for different matching neighbor-

hoods and forecast lead times are shown in Figs. 4 and 5,

respectively. The location of perfect performance, in-

dicated by a CSI of 1, is in the upper-right corner, but

for a probabilistic forecast with nonzero spread a perfect

CSI is not possible (Hitchens et al. 2013). Additionally,

the maximum CSI should correspond with POD com-

parable to SR (i.e., bias ’ 1) to discourage forecast
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‘‘hedging’’ (e.g., overforecasting to correctly predict

observations).

The maximum CSI for low-level UH probability

swaths tends to correspond with a probability thresh-

old of 22.2% (4/18), independent of the lead time or

matching neighborhood. The maximum CSI value

ranges from 0.26 to 0.31 (based on the matching

neighborhood) in the 0–60-min period (Fig. 4a) and

drops to 0.21–0.27 in the 90–150-min period (Fig. 4d).

Focusing on the probability threshold5 22.2% (4/18),

the POD and SR for low-level UH in the 0–60-min

period at the 30-km matching neighborhood is 0.46

and 0.47 leading to a bias close to 1 (0.97; Fig. 4a).

These POD and SR values correspond to correct

predictions of ’50% of the observed low-level rota-

tion tracks (with a similar success rate) out to 60min

of lead time. Even with a 0-km matching neighbor-

hood (indicating overlapping forecast and observed

objects), the WoFS low-level probabilistic guidance

correctly predicted 40% of observed low-level rota-

tion tracks. Looking at the different lead times for the

22.2% (4/18) probability threshold, the POD drops

to 0.39 (30-km matching neighborhood) for the 90–

150-min lead time (Fig. 4d). However, the SR remains

relatively unchanged as the lead time increases. One

explanation for the consistent SR values with increasing

lead time may be that convection initiation at later lead

times is poorly forecasted, resulting in an increasing

number of misses without a corresponding increase in

false alarms. The trend in PODwith lead time results in a

steady drop in bias to 0.85 (30-km matching neighbor-

hood) at the 90–150-min lead time (Fig. 4d).

In general, as the probability threshold increases be-

yond 11.1% (2/18), there is a shift toward bias below 1,

which is largely attributable to storm-scale predictability

limits. Storm decay at later lead times in some ensemble

members coupled with greater ensemble spread in me-

socyclone location (increasing the likelihood of non-

overlaping UH tracks in members) will cause forecast

probabilities associated with an individual thunderstorm

to decay with lead time (Cintineo and Stensrud 2013;

Flora et al. 2018). Therefore, the maximum probability

for all probability forecast objects will decrease with

increasing lead time. Thus, the number of probability

forecast objects at lower (higher) probability thresholds

will grow (drop) with increasing lead time effectively

lower the bias at higher probability thresholds. This in-

creasing number of probability objects at lower proba-

bility thresholds also explains why the contingency

table metrics for probability thresholds # 11.1% (2/18)

appear insensitive to forecast lead time. Overall, the

contingency table metrics and trends with increasing

FIG. 3. Illustration of transforming individual ensemble member mesocyclone objects into probabilistic mesocyclone objects with a

single, representative probability value. (a) Paintball plot of forecast mesocyclone objects identified from raw updraft helicity aggregated

over 60min, then quality controlled as described in section 2c(1). (b) Gridscale probabilities calculated from the mesocyclone objects as

described in section 3a. (c) Probability objects are identified using the enhanced watershed algorithm and assigned the maximum

probability occurring in the object (shown as the filled color). The technique is demonstrated using a 0–60-min probabilistic forecast of

low-level mesocyclone occurrence initialized at 2300 UTC 1 May 2018. Observed hour-long low-level rotation tracks are outlined with

black contours. The large probability swath near point A denotes a potential limitation of the watershed algorithm where objects can be

shrunk compared to the raw probability field.
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lead time for probabilistic forecasts of low-level

UH are similar to those for midlevel UH (Fig. 5).

The probability threshold corresponding with the maxi-

mum CSI in the midlevel UH objects varies between

22.2% (4/18) and 33.3% (6/18), dependent on forecast

lead time.Using the probability threshold5 33.3% (6/18),

the SR is greater than the POD in the 0–60-min pe-

riod, unlike the low-level UH. At later lead times,

however, the maximum CSI of the midlevel UH fore-

casts generally have a bias of 1 (Figs. 5c,d). The CSI

for the midlevel UH forecasts tend be slightly less

than corresponding thresholds in the low-level UH

forecasts (cf. Fig. 5 and Fig. 4). This is in contrast to

the results of S18 that found midlevel UH forecasts had

slightly higher CSI than low-levelUH in the deterministic

verification. A possible explanation is that the current

study includesmore summertime events where theWoFS

may be overpredicting midlevel rotation. There was

also a similar drop in POD in the midlevel UH forecasts

as compared to the low-level UH, but nearly constant SR

at the later lead times leading to the bias dropping below

1. Ultimately, the differences between UH in the two

layers are very small and may not be significant.

Last, some additional characteristics of low- and mid-

level UH probability swath object accuracy in the per-

formance diagrams are noted. First, separation between

FIG. 4. Performance diagrams for WoFS low-level (0–2 km AGL) mesocyclone probability swath objects using

0-, 9-, 15-, and 30-km matching neighborhoods (gray, blue, orange, and red, respectively) and valid at (a) 0–60,

(b) 30–90, (c) 60–120, and (d) 90–150min. The dots represent the different probability thresholds [plotted every

11.1% (2/18)].
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the performance curves at different matching neigh-

borhoods decreases as the probability threshold in-

creases. This is unsurprising as increasing the probability

threshold progressively reduces the number of ‘‘yes’’

forecasts, resulting in lower number of possible hits

and a low POD regardless of the matching neighbor-

hood. Second, separation between the performance

curves at different matching neighborhood does not

change markedly with forecast lead time. As will be

shown in section 4c, the centroid displacement between

forecast and observed objects grows markedly with

lead time. Therefore, the lack of lead time sensitivity

to neighborhood in the contingency table score is likely

attributable to the minimum spatial displacement in

the total interest score used for object matching (i.e.,

objects may overlap but have a larger centroid dis-

placement at longer lead times).

b. Reliability diagrams

Figures 6 and 7 show the reliability of the low- and

midlevel UH probabilistic forecasts for the different

matching neighborhoods and forecast lead times, re-

spectively. Traditionally, for optimal reliability, the

curves ought to lie along the diagonal from left to right

with curves falling to bottom right (upper left) having an

over (under) forecasting bias. Using the method of

Bröcker and Smith (2007), we can compute consistency

bars for the observed frequencies in each probability

bin. Thus, we can assess how ‘‘reliable’’ the reliability

estimates are. Additionally, the inset histograms are the

FIG. 5. As in Fig. 4, but for midlevel (2–5 km AGL) updraft helicity probability swath objects.
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number of probability objects in each probability bin

[in increments of 11.1% (1/9)] for the 0-km matching

neighborhood.

Low-level UH forecast probability objects , 60%

(Fig. 6a) have a near-perfect reliability in the 0–60-min

period with increasing reliability at greater matching

neighborhoods, but an overprediction of mesocyclone

likelihood is present for probability values greater than

60%. Overprediction of forecast probabilities greater

than 60% in the 0–60-min time period are attributable to

underdispersion in WoFS forecasts (Fig. 1). In the inset

histograms for both mid- and low-level UH, the forecast

sharpness decays with increasing lead times as the

number of probability objects at probabilities greater

FIG. 6. Reliability diagrams for WoFS low-level mesocyclone probability swath objects using 0-, 9-, 15-, and

30-km matching neighborhoods (gray, blue, orange, and red, respectively) and valid at (a) 0–60, (b) 30–90,

(c) 60–120, and (d) 90–150min. The bin increment of forecast probabilities is 11.1% (1/9). The inset (gray bar

graph) is the forecast histogram for the 0-kmmatching neighborhood. The dashed line represents perfect reliability.

The vertical line along the diagonal was the error bars for the observed frequency in each bin based on the method

in Bröcker and Smith (2007).
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than 77.7% (7/9) greatly drops off. As explained above,

the decay in probabilities with increasing lead time is

attributable to the storm-scale predictability.

Sensitivity of the reliability for mid- and low-level

UH probabilistic forecasts was generally lead-time

and bin dependent. Increasing the matching neigh-

borhood does increase the number of observed ob-

jects in a given bin, but does not necessarily improve

the reliability. The greatest sensitivity to the matching

neighborhood was evident for probabilities greater

than .60%, especially as lead time increases. However,

the probability swath values for low-level UH matched

to observations using a 30-km matching neighborhood

in the 60–120- and 90–150-min periods generally de-

viates from the observed frequency by less than 10%

(Figs. 6c,d).

Mid-level UH forecast probabilities , 30% are also re-

liable in the 0–60-min period, but the forecast probabili-

ties .40% have a larger overprediction bias than low-

level UH (Fig. 7a). For example, in the 0–60-min period,

probability swath objects near the 60%bin formidlevelUH

only overlapwith observed rotation 40%of time.However,

FIG. 7. As in Fig. 6, but for midlevel updraft helicity probability swath objects.
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at later lead times, midlevel UH forecast probabilities

. 70%are generallymore reliable than the low-levelUH

forecast probabilities (cf. Figs. 6c,d and Figs. 7c,d).

c. Centroid displacement

Finally, centroid displacement between matched ob-

jects is examined to identify potential storm motion

biases, which have been noted in subjective evaluations

of WoFS probabilistic guidance (Yussouf et al. 2013b;

Wheatley et al. 2015; Yussouf et al. 2015) as well as in

objectively evaluated deterministic products (Skinner

et al. 2016). Figures 8 and 9 show the centroid dis-

placement between the matched observed and forecast

objects with kernel density estimate (KDE) contours

overlaid for low- and midlevel UH, respectively. The

KDE technique implemented here applies a Gaussian

kernel with a smoothing bandwidth determined from a

general optimization algorithm to each point within the

parameter space (Scott 1992). Kernels for each point are

summed to provide a measure of the density of points

and quantify biases in the displacement between the

forecast and observed objects. As discussed in section

2c(2), since the enhanced watershed algorithm uses

minimum area as a stopping criteria, probability swath

objects in some cases will be shrunk, potentially chang-

ing their centroid and boundary displacement from ob-

served objects. However, the impact of the enhanced

watershed algorithm is primarily on the highest KDE

contour when compared with probability objects iden-

tified using a single threshold method (not shown). The

highest concentration of centroid displacements for

both mid- and low-level UH (Figs. 8 and 9) are within

FIG. 8. Scatterplots of the east–west and north–south centroid displacements (km) of matched objects for

hour-long low-level updraft helicity probability objects valid at (a) 0–60, (b) 30–90, (c) 60–120, and (d) 90–150min.

KDE contours of the 95, 97.5, 99, and 99.9 percentile values of each distribution are overlain to illustrate the

evolution of centroid displacement with lead time.
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30km, consistent with S18. Deviations larger than the

matching neighborhoods tested in this study are a by-

product of forecast probability objects in MCSs being

much larger than observed rotation tracks. Often, the

large probability objects associated with MCSs can have

overlapping observed objects, but the centroids are

displaced up to 60–90 km.

Centroid displacement for both low- and midlevel

UH, based on the 99.9th percentile contour (innermost),

has an inconsistent bias with forecast lead time with a

slight eastward displacement (’5 km) in the 0–60-min

forecast period (Fig. 8a and Fig. 9a, respectively) shifting

to minimal bias in the 60–120-min forecast period

(Fig. 8d and Fig. 9d, respectively). In the 90–150-min

forecast period, there remains minimal bias in the mid-

level UH forecast (Fig. 9d), but the eastward bias re-

turns for the low-level UH forecasts (Fig. 8d). We

suspect the bias is an artifact of different track lengths

between the UH and azimuthal wind shear tracks and in

addition to the object identification and matching

methods. Differences between UH and azimuthal shear

track lengths can be related to variation in stormmotion,

but also to variation in storm intensity or duration,

which would also result in centroid displacement be-

tween matched object pairs. Thus, attributing centroid

displacement biases solely to differences in storm mo-

tion is difficult since biases in predicted intensity or

longevity could produce similar centroid displacements.

At all forecast lead times, the 95th and 97.5th percentile

contours (two outermost) are similar between the low-

and midlevel UH and roughly centered on the origin

(Fig. 8 and Fig. 9). The area of the 95th percentile con-

tours are similar for low- and midlevel UH except in the

90–150-min forecast period where low-level UH is a

bit broader compared to the midlevel UH indicating

a larger variance in centroid displacement between

FIG. 9. As in Fig. 8, but for midlevel updraft helicity probability swath objects.
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matched objects (cf. Fig. 8d and Fig. 9d). In general, the

outermost KDE contour (95th percentile) expands

with increasing lead time, especially for low-level UH.

As noted in section 4a, the centroid displacement between

forecast and observed objects grows markedly, but there

was a lack of lead time sensitivity to matching neighbor-

hood in the contingency table score. Therefore, the min-

imum displacement is likely dampening the effects of the

larger centroid displacements for the contingency table

metrics (i.e., forecast and observed objects overlap, but

have larger centroid displacement). Ultimately, the ori-

entation of the contours are along the expected climato-

logical storm track, suggesting the centroid displacements

most likely represent differences in track length (and

relative centroid position) that are not necessarily a re-

sult of a biased storm motion. Additionally, artifacts in

MRMS rotation tracks are more common in the 0–2-km

layer than for 2–5km (owing to more ground clutter), so

the bias may be influenced by limitations of the verifi-

cation dataset as well as differences in the forecast.

5. Conclusions

A fundamental goal of the WoF project is to provide

probabilistic guidance of severe weather hazards associ-

ated with individual thunderstorms. As a first effort, S18

established a baseline for WoFS deterministic thunder-

storm and mesocyclone forecast products. The current

study extends S18 by verifying the accuracy and reliabil-

ity of WoFS hour-long probabilistic mesocyclone track

forecasts. As grid-based verification showed, the WoFS

probabilistic mesocyclone guidance on the native 3-km

grid greatly overpredicts the likelihood of a mesocyclone

impacting a particular point. This overprediction bias is an

indication of considerable underdispersion in the WoFS.

It is possible to improve the grid-based reliability by

upscaling the forecasts and observations, but doing so

obscures probabilities associated with individual storms.

Despite the overprediction bias, WoFS probabilistic

guidance on the native 3-km grid has been found to be

useful in operational settings (Wilson et al. 2019). For

example, Choate et al. (2018) found that paintball plots,

which show the separate rotation tracks for all ensemble

members on a single figure, were by far the most com-

monly used products in the SFE. These differences be-

tween grid-based verification metrics and forecaster usage

have motivated the development of a novel, comple-

mentary verification method for evaluating short-term,

storm-scale probabilistic guidance. This method uses an

object-based framework where probability swaths associ-

ated with individual storms are treated as forecast objects

and prescribed a single, representative probability. This

approach tolerates spatial differences between forecasts

and observations by defining a user-specified matching

distance. Importantly, unlike in the grid-based framework,

the forecast probabilities are not smoothed or upscaled,

which preserves forecast likelihood of mesocyclones oc-

curring within individual thunderstorms. Last, this verifi-

cation method was designed with the human forecast

decision model for WoFS probabilistic guidance in mind

and is intended to match the expected forecaster usage of

probability swaths (e.g., Wilson et al. 2019). The primary

findings from applying the object-based verification tech-

nique to WoFS probabilistic mesocyclone guidance fore-

casts for 63 cases during 2017 and 2018 are as follows:

d The highest skill, in terms of CSI, of the WoFS me-

socyclone probabilistic guidance was approximately as-

sociated with a probability threshold of 22.2% (4/18).
d The highest skill in the 0–60-min forecast period for

low-level UH probabilistic forecasts had a POD, SR,

and CSI of 0.47, 0.46, and 0.31, respectively. In the

90–150-min forecast period, the PODandCSI dropped to

0.39 and 0.27 while SR remained relatively unchanged.
d WoFS probabilistic low-level mesocyclone guidance is

reliable for forecast probabilities, 60% at all forecast

lead times using a 0-km matching neighborhood size,

but an overprediction of mesocyclone likelihood is

present at probability values . 60%.
d Mid- and low-level probabilistic mesocyclone fore-

casts had similar contingency table metrics, reliability,

and centroid displacement of matched pairs.
d The highest concentrations of centroid displacements

(as indicated by KDE contours greater than the 99.9th

percentile) in matched objects remained under 30 km

(which is the approximate size of the NWS warning

polygon) up to lead times of 90–150min.

The object-based framework developed herein can be

adapted to evaluate the performance and reliability of

other severe weather hazards (e.g., hail, heavy rainfall,

and severe winds) as well as changes in performance

across different WoFS system configurations. In future

work, it will be important to distinguish between the skill

and reliability of probabilistic rotation forecasts in

MCSs versus supercells. Our expectation is that meso-

cyclone forecasts will be more skillful for discrete

supercells in a favorable environment than for rotation

associated with MCSs (e.g., S18). It is also important to

explore the impact of timing errors on the performance

and reliability ofWoFSmesocyclone guidance. In future

work, 15- or 30-min probability swath objects could be

used to explore the impact of timing errors.

Other techniques beyond simple object-based verifi-

cation should be explored in future work. No single

verification method adequately describes the different

attributes of forecast performance and it is crucial
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to develop complementary verification measures.

For example, in a WoF framework, Skinner et al. (2016)

explored multiple verification techniques of deterministic

forecasts of low-level mesocyclones. Although the

object-based methods were favored in that study, more

work exploring different spatial verification methods is

warranted. There are also promising, new techniques

such as ensemble structure–amplitude–location (eSAL;

Radanovics et al. 2018) or verification that leverages in-

formation theory (Lawson et al. 2018b) which could be

suited for short-term, storm-scale probabilistic guidance.

There are limitations of the current method that will

need to be improved upon in future iterations. First, we

are using imperfect observation data coupled with an

imperfect object identification method. Though exten-

sive efforts were made to tune the object identification

algorithms used in this study, the number of objects

identified is sensitive to the scale of the phenomena to be

identified. Observed rotation tracks and probability

swaths, especially when considering different storm

modes, can span a wide spectrum of spatial scales. Thus, it

is difficult to find universal parameter settings for any

object identification algorithm that covers all relevant

scales in this problem. This limitation, however, could

potentially be mitigated by improving observations of

mesocyclones and accurately categorizing storm mode in

simulated and observed reflectivity. We also plan to ex-

plore the use of the multiple hypothesis tracking (MHT;

Lakshmanan et al. 2013) method in theWarning Decision

Support System–Integrated Information (WDSS-II) soft-

ware to improve identification of rotation tracks in the

time-aggregated azimuthal wind shear data. It will also be

possible to mitigate limitations in the object identification

method at higher resolution where discriminating be-

tween intense and weak rotation is improved.

A goal of this study was not only to assess current

WoFS probabilistic guidance, but also provide a frame-

work to objectively assess the impacts of potential

postprocessing techniques (e.g., machine learning cali-

bration). Applications of artificial intelligence methods

are becoming more common in the meteorological

community with methods spanning from traditional ma-

chine learning algorithms to sophisticated deep learning

methods (McGovern et al. 2017). Postprocessing tech-

niques utilizingmachine learning can potentially improve

the skill and reliability of WoFS probability swath ob-

jects by correcting model biases. Developing verification

techniques suited to short-term, storm-scale probabilistic

guidance is a necessary first step to evaluating machine

learning and other promising postprocessing methods.
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